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ANALYSISOFLINEAR PARAMETERVARYING SYSTEMMODELSBASEDON
REACHABLESETS

JONG-YEOBSHIN*

Abstract. Thispaperpresentstheanalysismethodofquasi-LPVmodels,comparingtheellipsoidset
whichcontainsthereachablesetofanonlinearsystemto definewhichquasi-LPVmodelis lessconservative
to representthenonlineardynamics.Threequasi-LPVmodelsareconstructedfl'oma nonlinearmodel
usingthreedifferentmethods,to facilitatesynthesisof anLPV controller for the nonlinear system. The

comparison results of closed-loop system performance with synthesized LPV controllers correspond to the

analysis results of quasi-LPV models.

Key words. LPV model, reachable set, LPV control synthesis

Subject classification. Guidance and Control

1. Introduction. One of control schemes for nonlinear systems is a linear parameter varying (LPV)

technique [7, 6, 11, 4, 3, 10]. This approach is particularly appealing in that nonlinear plants are treated

as linear systems with varying parameters. This allows linear control techniques to be applied to nonlinear

systems. In applying LPV analysis and synthesis methodology to nonlinear systems, an LPV plant model

of a nonlinear system is required to describe the nonlinear dynamics. Since an LPV controller is synthesized

based on an LPV model and is applied to control the nonlinear system, it is important to choose which LPV

model is used for an LPV controller synthesis to lead a less conservative result.

There are three different approaches to generate an LPV model from a nonlinear mathematical model

of a nonlinear system. Conventionally, an LPV model is constructed by the set of linearized models around

equilibrium points. Another approach is state transformation which changes state coordinates to remove

nonlinearity in the dynamics [5, 8]. The other approach is function substitution which formulates nonlinear

functions into quasi-LPV form functions [15, 16, 9]. The LPV models generated by these three methods have

been discussed in terms of accuracy to present a nonlinear dynamics by comparing time simulation results

with the pre-defined input signals [8, 1]. Comparison of the time responses is one of approaches to decide

which LPV model will be used for LPV analysis and synthesis of a nonlinear system.

There are possibilities for existence for different LPV models to produce time responses of a nonlinear

system accurately within ignorable error range. Therefore, in this case, comparison of the time simulation

results of the LPV models is not sufficient to analyze the models. In this paper, one of approaches is

demonstrated to analyze LPV models to find which LPV model is less conservative to describe the nonlinear

system.

In this paper, three different LPV models of a nonlinear system are provided by three methods and time

simulation of three LPV models with the pre-defined input signals are presented. Ellipsoids which contain

the reachable set of the nonlinear system are calculated according to each LPV model and compared the

sizes of the ellipsoids. Also, each LPV controller is synthesized, based on each LPV model and is applied to

control the nonlinear system.

*ICASE, MS. 132c, NASA Langley Research Center, Hampton, VA, 23681 (emaihj.y.shin@larc.nasa.gov). This research was

supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046 while the author

was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681-0001



Outline of this paper is follows. In section 2, conventional LPV control synthesis used in this paper is

briefly summarized. In section 3, an analysis methodology of quasi-LPV models is presented, calculating

an ellipsoid which contains a reachable set. In section 4, an example of analysis of quasi-LPV models is

demonstrated and also nonlinear simulations with LPV controllers synthesized based on each quasi-LPV

model are presented for comparison. This paper concludes with a brief summary in section 5.

2. LPV Control Synthesis. In this section, a quasi-LPV system is defined and an LPV control

synthesis methodology is briefly described. Consider a generalized linear open-loop system as functions

of parameters p(t) E P. For a compact subset P C _, the parameter variation set denotes the set of

all piecewise continuous functions mapping R (time) into P with a finite number of discontinuities in any

interval, where s is number of parameters. An LPV open-loop system can be written as

y(t)J LC_(p(*)) D21(p(/.)) L'.(OJ

(2.1)

where y(f), e(f), d(t) and u(t) are measurements, errors, disturbances, and control signals. A quasi-LPV

system is defined when scheduling parameter vector p contains part of state vector as [Zl Pc], where Pc is

an exogenous scheduling parameter vector and the state vector z = [Zl z2]. Hereafter, p denotes p(t). The

induced £2 norm of d to e is defined as

Ilel12
sup

aer),de_2,11dll2¢0 Ildl12

In an LPV synthesis methodology, suppose there is an LPV output feedback controller K(p) which

stabilizes the closed-loop system exponentially and makes the induced £2-norm of d to e less than T. The

controller K(p) can be written as

[c_(_,) Dk(p)J

An LPV controller K(p) can be constructed from solutions of X E _'_×_ and Y E _,_x,_ of the following

optimization problem [4].

rain 7 (2.3)
X,Y ET2. _ x n

subject to

xAT(p) + A(p)X - B2(p)B_(p) XC_(p) 1
C11(p)X -f,_, 0 I

_-_B_l (p) o -&_ J
< 0 (2.4)

_T(p)Z __Ind 1

v-_c_(p) 0 -&_ j

< 0, (2._)

7-1/,_
(2.6)



where

X>0, Y>0

ft(p) - A(p) - B2(p)Cx2(p), /l(p) - A(p) - B12(p)C2(p), (2.7)

and n is number of states of the generalized open-loop system. Note that X and Y are constant positive

definite matrices.

A method to construct an LPV controller K(p) from the solution matrix X and Y of the LMI optimiza-

tion problem is taken fl'orn Ref.[4]. An LPV controller is constructed as[4]:

Ak(p) = A(p) -]- B2(p)F(p) -]- o-lyL(p)C2(p) - "_/-2O-1;1//(p), (2.8)

Bk(p) = -Q-1YL(p), (2.9)

Ck(p) = F(p), (2.10)

Dk(p) = 0 (2.11)

where matrices Q, F(p), L(p), and M(p) are defined as

Q = Y- 7-2X-1,

F(p) = -[B_(p)X -1 + DT.2(p)Cx (p)],

L (p) = -[Y-1 cT (p) + B1 (p)D_l (p)],

_l(p) = H(p) + 72Q[-Q-JUL(p)D21 (p) - 131 (p)]BT(p)X -x.

Matrix H(p) is defined as

H(p) = -[X-1AF(p) + AF(p)TX -1 + CT(p)CF(p) + 7-2X-XBI(p)BI(p)TX -1]

with Af(p) = A(p) + B2(p)F(p) and CF(p) = C1 + Dx2F(p). The closed-loop system with the controller

K(p) is exponentially stable and the induced £2 norm is less than 7- The proof can be found in Ref. [4].

To make the optimization problem of equation (2.3) computationally tractable, scheduling parameters p are

discretized into grid points. Thus, infinite LMI constraints, equations (2.4)-(2.5), are presented as finite

number of LMI constraints. Note that the LPV controller may be different based on scheduling-parameter

grid points.

Note that the open-loop LPV system matrices A(p), B(p), C(p) and D(p) are used to construct the

LPV controller (see equations (2.8)-(2.11)). The LPV controller can be different based on the different LPV

models of a nonlinear system, even if the different LPV models can produce the exact same input-output

time responses for each other.

3. Analysis of Quasi-LPV Model. In this section, one of approaches to analyze an LPV model is

presented in terms of the sizes of ellipsoids which contain a reachable set of a nonlinear system. Before we

introduce an analysis method of LPV models of a nonlinear system, a class of nonlinear systems used in this

paper is defined as follows.

Consider a nonlinear system in which an input vector enters affinely. A nonlinear system can be written

as

= F(x) + B(x) (3.1)



where a state vector x is in _'¢, an input vector u is in TU7_, continuous function F(x) : _'_ --+ _'_ and

B(x) : g'_ --+ TC_×'_. The reachable set of a nonlinear system with bounded-energy inputs is defined by

{ L }N,_l= x(T) _'=F(x)+B(x)u, x(O)=O, urudt_<a 2, T_>0 (3.2)

where a is a given positive constant. The reachable set of a nonlinear system is bounded. Here an initial

point of x is defined as 0 without loss of generality. Definition of an invariant set used in this paper is follows:

Definition 3.1 Invariant set

Let a set c denotc a set centered at the origin

c = {x • 7_'_lV(x)< 1}.

The set c is said to bc invariant if for every trajectory x(t) of a nonlinear system, x(O) • c implies x(t) • c

for all t. A function V(x) is a Lyapunov function.

dv(x)
It is easily shown that when V(x) > 0 and _E- < 0 for all trajectory satisfying the nonlinear dynamics in

equation (3.1), the set c is invariant.

A quasi-LPV model of a nonlinear system can be produced with or without a bounded uncertainty block

to capture nonlinear dynamics.

• Case 1 : a quasi-LPV model can describe the nonlinear dynamic model without an uncertainty

block. A quasi-LPV model is

_.= A(,)x + B(,),, = F(_) + B(x)**. (3.3)

The reachable set of a quasi-LPV model is defined as

{ /: }rcb_- _ _ = A(.). + B(,)n, _(0) = 0, nrndt _<_, _r_>0 . (3.4)

Thus, it is obvious that the reachable set TCb_is equal to T¢,_l.

• Case 2: a quasi-LPV model can describe the nonlinear dynamic model with a bounded uncertainty

block. A quasi-LPV model is

where B_(x) • _,_×v, w •

reachable set of a quasi-LPV model is defined as

_ = A(x)x + B(x)u + B_(x)w,
r_ - x _ = c_(.)x + D_(.)n + D_w(x>,

W =/--._Z

Assume that there exists A such that

_=A(.)_+B_(_)n+Bw(.>, (3.a)

z =C_(x)x +D_(x)u +D_w(x)w, (3.6)

w=Az (3.7)

_v, C= • R q×_, D_ • T¢qxm, D_w • _q×v, and ][A[[ < ft. The

L }x(O)=O, uTudt<_c_ 2, T>_O .

(3.s)

5g,_z C TCb¢_. (3.9)



Notethatcalculatingthesizeandstructureof A to validate equation (3.9) is out of this paper scope.

Suppose there exists a Lyapunov function V such that

dV(x(t)) 1
< @lb(t)ll_ (3.1o)

dt - c_.

for every x(t) and u(t) satisfying equation (3.3) or equations (3.5)-(3.7). Then there exists the invariant set

{x I V(x) < 1} which contains the reachable set _b_ or _b_, according to each quasi-LPV model.

3.1. Singular Quadratic Lyapunov Function. In this section, an LMI optimization problem is

formulated to calculate the smallest ellipsoid which contains the reachable set, using a singular quadratic

Lyapunov function V(x) = xTpx. For the two cases: Case 1 and Case 2, the LMI optimization problems

are formulated as follows.

For case 1:

subject to

sup T<(P) (3.11)

PB(.)]
x I <0. (],3.12

1 9
The LMI constraint of equation (3.12) is easily derived from dV(x(t))dt --< 7_llu(t)ll2 and equation (3.3). Thus,

the set {x(t)lx(t)rPx(t) < 1,t > T} contains the reachable set TCb_. Also, it is noticed from the LMI

constraint that the ellipsoid is an invariant set.

For case 2:

sup Tr(P) (3.13)
P

+ PA(.) + tCf(x)C (.)
Bf( )P +

T TBw(x)P + tD_,(x)C_(x)

PB_(x) + tC_(x)D_(x)

1 I +
0

PB_,(x) + {C_(x)D_,(x)

0

tD_T, (x)D_w (x) - _I

< 0 (3.14)

P>0, t_>0 (3.13)

where IIAII < /3 and fl is given constant. The LMI constraint of equation (3.14) is easily derived from

dV(x(t)) < 1de _ _llu(t)ll_ and equations (3.5)-(3.7), using S-procedure [14]. The set {x(t)Ix(t)Tpx(t) < 1, t > T}

contain the reachable set 5gb¢_. Also, it is noticed from the LMI constraint that the ellipsoid is an invariant

set.

The size of the ellipsoid is defined as

Sp = C H Ai(P) (3.16)

where C is constant which is dependent on the geometry of the ellipsoid. Thus, it is easy to compare the

size of the ellipsoid set {xlxTpx < 1}.



3.2. Parameter Dependent Lyapunov Function. In this section, the LMI optimization problem is

formulated with the parameter-dependent Lyapunov function V(x) = xTp(x)x. LMI constraints are written

for each case in the same manner of formulation of LMI constraints in equations (3.12) and (3.14).

For case 1:

subject to

sup Tr(P(x)) (3.17)
P(x) :7?.,, -+7?. ,_xn

[A(x)f P(x) + PA(x) + P(x) P(x)B(x))]
11 <0.[ S(x)rp(*) a_ J

For case 2:

sup T_.(P(,))
p(x) :??.n -+']?. ,_xr_

-.d T (x)P(x) + P(x)A(x) + tC_z (x)Cz (x) + ]5(x) P(x)B. (x) + tC_ (x)Dz. (x)

B_(x)P(x) + tDTu (x)C_ (x) fi I + tD_ (x)D_ (x)

B_ (x)P(x) + tD_ (x)C_ (x) 0

P(x)B_(x) + tC_ (x)D_,(x)

0

tD_(x)D_(x) - _ I

(3.1s)

(3.19)

< 0 (3.20)

P>0, t_>0. (3.21)

Using the LMI optimization, the smallest ellipsoid to capture the reachable set of the nonlinear dynamics

can be calculated. To solve the LMI optimization problem, the basis functions of P(x) are required. The

details of solving the LMI with /5(x) will be explained in the next section. Note that the size of the set

{xlx(t)rp(x(t))x(t) < 1} is not easy to calculate since it is not ellipsoid.

4. Example. In this section, LPV models of a nonlinear system are generated by three different meth-

ods (Jacobian linearization, state transformation, and function substitution) and each LPV model is simu-

lated with pre-defined input signals. The simulation results are compared with nonlinear simulation results

to notice that quasi-LPV models can capture the nonlinear dynamics. Also, the size of an ellipsoid which

contains the reachable set of the nonlinear system is calculated for each LPV model. An LPV controller is

synthesized based on each LPV model, respectively and is simulated with nonlinear system to compare the

closed-loop performance.

A nonlinear system taken fl'orn Ref. [2] is

[ 11:[ Xl 1['01:be xl -Ix2lx2 - 10 + u, y = x2. (4.1)

It is noted that systems with similar types of nonlinearity are frequently encounted in practice [2, 13].

4.1. Quasi-LPV Models. Using Jacobian linearization around trim points, the set of linearized models

can present a quasi- LPV model of the nonlinear system. The linearized model at a trim point is

[<:[1' [:1&_/ -21x_01 [&'_J + &' 6y = am2, (4.2)

where axl = xl - Xlo, ax.e = x2 - X2o, au = u - Uo, and ay = y - Yo. The associated quasi-LPV system is

["11=[-:,,2 p,11 , 



where the range of z = Ix%l is defined arbitrary from 0 to 5. It is noted that states, r/1 and r/2, are defined

as deviation from each trim point (Xlo, x%, Uo). Thus, when scheduling parameter z changes the definitions

of states of the LPV model are changed.

To use function substitution [15, 16, 9], the nonlinear system is rewritten as

[1 °0111[:1[ ]_'1 1 21 -Xlo -_- u 0
= + _+

i'2 22 Xso -IS'2 + x%l(S'2 +*20) - 10
(4.4)

where

g

f(&) = _[1*%1x%- 122+ x%1(_'2+ x%)]/&,

t 0,

A quasi-LPV model is written as

Xl ---- Xl -- Xl o , X2 ---- "2 -- X2 o , ?_ ---- _Lt -- ?t 0.

The nonlinearity in equation (4.4) is substituted for a function in quasi-LPV form.

22¢0,

22 = 0.

0s, 2,1E :I+

(4.5)

(4.6)

(4.7)

Here, a trim point is set as (Xlo, *20) = (11, 1). Note that the definition of states of this quasi-LPV model

is deviation from the trim point. Also, the definition of states does not change as a scheduling parameter ._2

changes.

A quasi-LPV model of the nonlinear system can be generated by changing state coordinates [51

_1 ----Xl -- *lo(X2), (4.8)

U2 =x2 (4.9)

where

2;'10('2) ---- IX21"2 + 10. (4.10)

A quasi-LPV model is

[::1=[1 001[:1+ ,41 ,
where r = u - uo(x2). Note that definition of control input r and state r/x are changed as scheduling

parameters vary. When the quasi-LPV model is simulated, the variations of Uo(X2) and _/1 should be

compensated as the scheduling parameter x2 changes.

4.2. Quasi-LPV Model Simulations. There are three quasi-LPV models to describe the nonlinear

system. To compare the simulation results between the nonlinear system and the quasi-LPV model, a

performance index J is introduced as £2 norm of error in finite time T,

// /7J = c(t)te(t) dt = (y,_,(t) - yLpk-(t))t(y,_z(t) -- yLPV(t)) dt (4.12)

where Y,_l and YLPV are measurements of the nonlinear system and the quasi-LPV model, respectively. Here,

T is set as 30 sec in this example.



Thequasi-LPVmodelsaresimulatedforthetwodifferentinputsignalsets(seeFigure5.1),respectively.
ThesimulationresultsinFigure5.2showthatthequasi-LPVmodelspresentthenonlineardynamicsvery
accurately.Thedifferencesoftimeresponsesbetweenthequasi-LPVmodelsandthenonlinearsystemare
notnoticeablein Figure5.2. Theperformanceindex,J, for all quasi-LPV models is less than 10 .7 for

both different input cases. The indexes, NL, Q-LPVj, Q-LPV,, and Q-LPV/, in Figure 5.2 are denoted

as the nonlinear system, the quasi-LPV model by Jacobian linearization, the quasi-LPV model by state-

transformation, and the quasi-LPV model by function substitution. Note that all quasi-LPV models can

present all state dynamics of the nonlinear system very accurately. Therefore, comparing performance index

is not sufficient to choose which quasi-LPV model will be used for LPV controller synthesis.

4.8. Reachable Set. In this section, the smallest ellipsoid which contains the reachable set of the

nonlinear model is calculated for each quasi-LPV model.

4.8.1. Singular Quadratic Lyapunov Function. Assume a Lyapunov function V(z) = zTPz,

P E 7__×'_ is used to calculate the smallest set {zlxfPz < 1} which contains the reachable set of the

nonlinear system. Consider a quasi-LPV model without an uncertainty block, which can capture the nonlin-

ear dynamics (Case 1). To make the LMI optimization problem in equation (3.11) eomputationally tractable,

the infinite number of LMI constraints are converted into the finite number of LMI constraints defined each

grid points over the parameter space. The grid points in this example are defined as

x2_ E {0.1,0.5,0.9,2,3,4,5}. (4.13)

Also, bounded energy inputs are required to solve the LMI optimization problems. Hereafter, the bounded

energy inputs are defined JoT ut_u <_ 0.2 in this example.

The solution matrix P of the LMI optimization problem is calculated, based on the quasi-LPV models

generated by Jacobian linearization and function substitution, respectively. The ellipsoids corresponding to

the solution matrix P are shown in Figure 5.3 for each quasi-LPV model. In Figure 5.3, possible trajectories

of the nonlinear system with pre-defined several input signals bounded by constant energy are also plotted

as dashed lines. It is observable that the two ellipsoids capture the candidate trajectories to represent the

reachable set of the nonlinear system. Also, it is noticeable that the size of the ellipsoid based on the function

substitution quasi-LPV model (Q-LPVj.) is smaller than that of the Jaeobian linearization quasi-LPV model

(Q-LPVj). Thus, the quasi-LPV model generated by function substitution is less conservative than the

quasi-LPV model generated by Jaeobian linearization to contain the reachable set of the nonlinear system.

Since one of eigenvalues of the quasi-LPV model generated by state transformation is 0 for all grid

points, it is not computationally tractable to calculate the size of the ellipsoid to contain the reachable set.

It is noticeable that the quasi-LPV model can not satisfy one of the conventional assumptions for 7-/o_ and

LPV synthesis [4] :

[a be]havefullrOwrank'c2d21 (4.14)

Thus, this analysis method can not apply for a quasi-LPV model which has zero eigenvalue over all grid points.

Hereafter, we discuss two quasi-LPV models generated by Jacobian linearization and function substitution

methods.

Consider that a quasi-LPV model with an uncertainty block to represent the nonlinear dynamics (Case 2).

Here, unmodeled dynamics is assumed as an input multiplicative uncertainty in Figure 5.4. The uncertainty



weightingfunctionl/l_,_isassumedas

H&= 0.0045s/0.09 + 1
s/80 + 1 (4.15)

The magnitude of the uncertainty block IAI is bounded by one. The ellipsoids to contain the reachable

set are calculated based on quasi-LPV models (Q-LPVj and Q-LPV/) and shown in Figure 5.5. It is

noticed that the function-substitution quasi-LPV model has smaller ellipsoid to represent the reachable set

than the Jacobian-linearization quasi-LPV model. Recall that the state x2 is measurement for design an

output feedback LPV controller. It is noticeable that the axis of the ellipsoid at x2 direction is smaller

of the function-substitute quasi-LPV model than the Jacobian-linearization quasi-LPV model. The set of

{(x_, x2)IxTpx < 1} in Figure 5.5 is much larger than the set shown in Figure 5.3 for each quasi-LPV model,

respectively. It is obvious that adding unmodel dynamics in the quasi-LPV model enlarges the size of the

set {(Xl, X2)IxTpx < 1}. The state x3 of augmented open-loop system is the state of the weighting flmction.

The sizes of the ellipsoids in x3 direction are similar to each other, based on each quasi-LPV model (Q-LPVj

and Q-LPV/).

In this example, adding unmodel dynamics in quasi-LPV models does not change the comparison result

that the function-substitution quasi-LPV model is less conservative to present the nonlinear dynamics than

the Jacobian-linearization quasi-LPV model. Note that it is unknown that adding an uncertainty block

changes the comparison results in general.

4.3.2. Parameter-Dependent Lyapunov Function. A Lyapunov function V(x) = xTp(x)x is used

to calculate the smallest set {xlV(x) < 1} which contains the reachable set of the nonlinear dynamics.

Consider quasi-LPV models without an uncertainty block. To solve the LMI optimization problem in equa-

tion (3.17), basis functions of P(x) are required. A matrix function P(x) and the time derivative of P(x)

can be written as:

N

P(x) = E fi(x)Pi, Pi • _n×n (4.16)
i 1

8 IV

P(x) = E(Z :i'j Ofi(x) ,_, (4.17)
j 1 i 1 _Yi)

with given basis functions fi(x), where s and N are number of scheduling parameter and number of basis

functions, respectively. In the example, the set of basis flmction {fi(x)} is defined as the first order polynomial

function set {1, x2} for computational convenience. The time derivative of P(x) is written as:

/5(x) = &2P'2 (4.18)

where P2 • _nxn. In conventional parameter-dependent Lyapunov function LPV synthesis [3], constant

bounded values u of the parameter rates are used to describe the time derivative of P(x) as:

n N

P(x) g'eg'+L"Ofi(Z)Ph 1_51< _j (4.19)
= Z.._Z.._ 3 Oxj u,

jlil

where +pj represents all possible combination set of -uj and _j. In this paper, the time derivative of P(x)

is written as

P(x) = E(E +gj(x) Pi), (4.20)
j 1 i 1



where gj(x) : _'_ --+ ?g is satisfied with 1_sI < gj(x). To evaluate equation (4.20), the function 9j(x) is

estimated from nonlinear dynamic simulation results with the bounded energy inputs. For this example,

(4.21)

where f(:?2) is defined in equation (4.6).

The boundary of the set {xlxZP(x)x < 1} to contain the reachable set _b_ is shown in Figure 6.6. The

solid line in Figure 5.6 represents the boundary of the set {xlxTp(x)X < 1} calculated based on the function-

substitution quasi-LPV model. The dotted line in Figure 5.6 represents the ellipsoid calculated using the

singular quadratic Lyapunov function based on the function-substitution quasi-LPV model. It is noted

that the set {xlV(x) < 1} using the parameter-dependent Lyapunov function is smaller than using singular

quadratic Lyapunov function. This result corresponds to that LPV control synthesis methodology using the

parameter-dependent Lyapunov function leads a less conservative result than using the singular quadratic

Lyapunov function [3]. The dashed-dot line in Figure 5.6 represents the set {xlxTp(x)x < 1} calculated

based on the Jacobian-linearization quasi-LPV model. It is observed that the function-substitution quasi-

LPV model is less conservative than the aacobian-linearization quasi-LPV model to present the reachable

set of nonlinear system. The analysis of quasi-LPV models with an uncertainty block leads the same result

that the function-substitution quasi-LPV model is less conservative. The plots of the calculated sets are

omitted for space limitation.

4.4. LPV Controller Synthesis. An LPV controller is synthesized based on each quasi-LPV model

and is simulated with the nonlinear simulation to compare the closed-loop system performance.

The prime objective of an LPV control synthesis is to track a given command. An LPV controller

synthesis formulation is taken from Ref. [2] shown in Figure 6.7. The performance weighting function W1

and control weighting function W2 are taken from Ref. [2] as

0.5 O.ls
_ - -- w2 - (4.22)

s + 0.002' s + 1000

The noise weight function is defined as constant 0.05 over all frequency range to present 5% measurement

error.

To solve the LMI optimization of LPV controller synthesis, a scheduling parameter is discretized over

all spaces. The grid points are presented in equation (4.13). The LPV controllers are synthesized for each

quasi-LPV model with same weight functions, using standard software from the MATLAB LMI toolbox [12].

There are two generated LPV controllers (Q-LPVg, Q-LPV/) according to two quasi-LPV models.

The responses to step change in command from -1 to 5 of the closed-loop system are shown in Figure 5.8.

It is observable that the overshooting responses of the LPV controller synthesized based on the function

substitution quasi-LPV model are smaller than those with the Jacobian-linearization quasi-LPV model. The

calculated 7 in equation (2.3) is 0.92 for the aacobian linearization quasi-LPV model and 0.73 for the function

substitution quasi-LPV model.

The performance results are correspond to the analysis results of LPV models. The ellipsoid based on

the functional substitution quasi-LPV model to present a reachable set of the nonlinear system is smaller.

That implies that the quasi-LPV model generated by the function substitution is less conservative. Note

that it is not known that the function substitution method can always generate a less conservative quasi-LPV

model in terms of an ellipsoid which contains the reachable set.

10



5. Conclusion. In this paper, one of approaches to compare quasi-LPV models which represent a

nonlinear system is demonstrated in terms of the smallest set which contains the reachable set of the nonlinear

system. Based on the size of the set, it is possible to define which quasi-LPV model is less conservative to

present the reachable set. The quasi-LPV models of a nonlinear system are generated by three different

methods (Jacobian linearization, state transformation, and function substitution) to facilitate to design an

LPV controller of the nonlinear system. LPV controllers are synthesized based on each quasi-LPV model

and simulated with the nonlinear system to compare the closed-loop performance. The performance results

correspond to the results of comparing the size of the set calculated based on each quasi-LPV model. Based

on the analysis results of quasi-LPV models, it is possible to choose which LPV model is used for LPV

controller synthesis of a nonlinear system.
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